Microbial Diversity in Sulfate-Reducing Marine Sediment Enrichment Cultures Associated with Anaerobic Biotransformation of Coastal Stockpiled Phosphogypsum (Sfax, Tunisia)
نویسندگان
چکیده
منابع مشابه
Microbial Diversity in Sulfate-Reducing Marine Sediment Enrichment Cultures Associated with Anaerobic Biotransformation of Coastal Stockpiled Phosphogypsum (Sfax, Tunisia)
Anaerobic biotechnology using sulfate-reducing bacteria (SRB) is a promising alternative for reducing long-term stockpiling of phosphogypsum (PG), an acidic (pH ~3) by-product of the phosphate fertilizer industries containing high amounts of sulfate. The main objective of this study was to evaluate, for the first time, the diversity and ability of anaerobic marine microorganisms to convert sulf...
متن کاملMicrobial manganese reduction by enrichment cultures from coastal marine sediments.
Manganese reduction was catalyzed by enrichment cultures of anaerobic bacteria obtained from coastal marine sediments. In the absence of oxygen, these enrichment cultures reduced manganates when grown on either lactate, succinate, or acetate in both sulfate-free and sulfate-containing artificial seawaters. Sodium azide as well as oxygen completely inhibited microbial manganese reduction by thes...
متن کاملAnaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures.
Monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene (BTEX) are widespread contaminants in groundwater. We examined the anaerobic degradation of BTEX compounds with amorphous ferric oxide as electron acceptor. Successful enrichment cultures were obtained for all BTEX substrates both in the presence and absence of AQDS (9,10-anthraquinone-2,6-disulfonic acid). The electro...
متن کاملAnaerobic Degradation of Hexadecan-2-one by a Microbial Enrichment Culture under Sulfate-Reducing Conditions.
A microbial enrichment culture from marine sediment was able to grow on hexadecan-2-one as the sole source of carbon and energy under sulfate-reducing conditions. Oxidation of the ketone involved carboxylation reactions and was coupled to sulfide production. This enrichment culture also grew on 6,10,14-trimethylpentadecan-2-one.
متن کاملAnaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway.
In the present study, anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria (SRB) was investigated and biotransformation pathways were proposed. SRB was enriched from anaerobic swine wastewater sludge and its abundance was determined by the fluorescence in situ hybridization (FISH) technique. Batch anaerobic biotransformation studies were conducted with fluorene ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Microbiology
سال: 2017
ISSN: 1664-302X
DOI: 10.3389/fmicb.2017.01583